Experimental

The title compound was prepared in quantitative yield by adding 1000 equivalents of pyridine to a $1.4 \times 10^{-4} M$ solution of $\left[\mathrm{Ni}(\mathrm{tpp})(\mathrm{CN})_{4}\right]$ (Callot, 1974) in dichloromethane at room temperature. After evaporation of the solvent, the solid was washed with hexane and dried under vacuum, resulting in dark-blue crystalline material. Single crystals suitable for X-ray analysis were obtained by slow diffusion of methanol into a solution of $\left[\mathrm{Ni}(\mathrm{tpp})(\mathrm{CN})_{4}\right]$ in dichloromethane/pyridine (10:1). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, δ, p.p.m.) 49.1 (broad, H_{β}), 9.1-7.5 (broad, $\mathrm{H}_{\text {phenyl }}$). UV-visible $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda, \mathrm{~nm}\right): 446,467$ (Soret band), 695 .

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Ni}\left(\mathrm{C}_{48} \mathrm{H}_{24} \mathrm{~N}_{8}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \text {.- }} \\
& 2 \mathrm{CH}_{4} \mathrm{O} \\
& M_{r}=993.78 \\
& \text { Triclinic } \\
& P \overline{1} \\
& a=9.349(2) \AA \text { ® } \\
& b=11.853 \text { (3) } \AA \\
& c=13.548 \text { (4) } \AA \\
& \alpha=77.92 \text { (2) }{ }^{\circ} \\
& \beta=69.70(2)^{\circ} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=18-20^{\circ} \\
& \mu=0.423 \mathrm{~mm}^{-1} \\
& T=294 \mathrm{~K} \\
& \text { Parallelepipedic } \\
& 0.40 \times 0.35 \times 0.20 \mathrm{~mm} \\
& \text { Dark blue } \\
& \gamma=68.38(2)^{\circ} \\
& V=1303.3(6) \AA^{3} \\
& Z=1 \\
& D_{x}=1.27 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured } \\
& \text { Enraf-Nonius MACH3 } \\
& \text { diffractometer } \\
& \theta / 2 \theta \text { scans } \\
& \text { Absorption correction: } \\
& \psi \text { scans (North, Phillips } \\
& \text { \& Mathews, 1968) } \\
& T_{\text {min }}=0.903, T_{\text {max }}=0.919 \\
& 4808 \text { measured reflections } \\
& 4564 \text { independent reflections } \\
& 3797 \text { reflections with } \\
& I>3 \sigma(I) \\
& R_{\text {int }}=0.016 \\
& \theta_{\text {max }}=25^{\circ} \\
& h=-10 \rightarrow 11 \\
& k=0 \rightarrow 14 \\
& l=-15 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F
$R=0.049$
$w R=0.074$
$S=1.651$
3797 reflections
331 parameters
H atoms included but not refined

No H atoms could be located for the methanol solvent.
Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: LSFM in MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIF IN in MolEN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1059). Services for accessing these data are described at the back of the journal.

References

Callot, H. J. (1974). Bull. Soc. Chim. Fr. pp. 1492-1495.
Collins, D. M., Countryman, R. \& Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 2066-2071.
Crossley, M. J., Burn, P. L., Chew, S. S., Cuttance, F. B. \& Newsom, I. A. (1991). J. Chem. Soc. Chem. Commun. pp. 1564-1566.

Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netheriands.
Giraudeau, A., Gross, M. \& Callot, H. J. (1981). Electrochim. Acta, 26, 1839-1843.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kirner, J. F., Garofalo, J. \& Scheidt, W. R. (1975). Inorg. Nucl. Chem. Lett. 11, 107-112.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ochsenbein, P., Ayougou, K., Mandon, D., Fischer, J., Weiss, R., Austin, R. N., Jyaraj, K., Gold, A., Terner, J. \& Fajer, J. (1994). Angew. Chem. Int. Ed. Engl. 33, 348-350.
Smith, K. M. (1975). In Porphyrins and Metalloporphyrins. Amsterdam: Elsevier.

Acta Cryst. (1997). C53, 1029-1031

Zinc(II) Acetate Dihydrate

Tsutomu Ishioka, ${ }^{a}$ Asami Murata, ${ }^{b}$ Yasuyuki Kitagawa ${ }^{b}$ and Kazuo T. Nakamura ${ }^{b}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Toyama
University, Gofuku, Toyama 930, Japan, and ${ }^{\text {b }}$ School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142, Japan. E-mail: ishioka@sci. toyama-u.ac.jp

$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)+0.08 F_{o}{ }^{4}\right]$
$(\Delta / \sigma)_{\text {max }}=0.005$ 。
$\Delta \rho_{\text {max }}=0.111 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.120 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)
(Received 31 October 1996; accepted 20 March 1997)
Table 1. Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$

$\mathrm{Ni}-\mathrm{N} 1$	$2.030(2)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.434(3)$
$\mathrm{Ni}-\mathrm{N} 2$	$2.079(2)$	$\mathrm{C} 8-\mathrm{C} 12$	$1.428(3)$
$\mathrm{Ni}-\mathrm{N} 5$	$2.240(2)$	$\mathrm{C} 11-\mathrm{N} 3$	$1.139(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.343(3)$	$\mathrm{C} 12-\mathrm{N} 4$	$1.146(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.374(4)$		
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 4$	$106.8(2)$	$\mathrm{C} 7-\mathrm{Cl1}-\mathrm{N} 3$	$173.6(3)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 9$	$108.7(2)$	$\mathrm{C} 8-\mathrm{C} 12-\mathrm{N} 4$	$173.6(3)$

Comment

The structure of the title complex, (I), is important for models of Zn soaps and Zn ionomers. Van Niekerk, Schoening \& Talbot (1953) reported the crystal structure using two-dimensional intensity data. However, an EXAFS study (Vlaic, Williams, Jérome, Tant \& Wilkes, 1988) revealed that the structure is somewhat incorrect. We report here the rerefined structure of (I) using threedimensional intensity data with an R factor of 0.060 .

(I)

It can be seen from Fig. 1 that the title complex takes a six-coordinate structure and that the coordination geometry around the $\mathrm{Zn}^{\mathrm{II}}$ ion is approximately octahedral. The Zn atom is coordinated by the two O atoms of the water molecules and four O atoms of the acetate ligands. Van Niekerk, Schoening \& Talbot (1953) reported bond lengths for $\mathrm{Zn}-\mathrm{OH}_{2}$ of $2.14 \AA$ and for $\mathrm{Zn}-$ O (carboxylate) of 2.17 and $2.18 \AA$. We found $\mathrm{Zn}-\mathrm{OH}_{2}$ to be 1.987 (4) \AA and $\mathrm{Zn}-\mathrm{O}$ (carboxylate) 2.179 (4) and 2.189 (5) Å. Similar six-coordinate structures were also observed for the corresponding $\mathrm{Zn}^{\mathrm{II}}$ complexes of several diaquabis(carboxylato)zinc(II) compounds (Smith, O’Reilly, Kennard, Stadnicka \& Oleksyn, 1981; Mak, Yip, Smith, O’Reilly \& Kennard, 1984; Chan et al., 1987; O'Reilly, Smith, Kennard \& Mak, 1987; Smith, Lynch, Mak, Yip \& Kennard, 1993). Their averaged $\mathrm{Zn}-\mathrm{OH}_{2}$ distance is 1.996 (3) \AA and $\mathrm{Zn}-\mathrm{O}$ (carboxylate) distances are 2.112 (3) and 2.296 (2) \AA. While our result for $\mathrm{Zn}-\mathrm{OH}_{2}$ [1.987 (4) \AA] is consistent with their results, the $\mathrm{Zn}-\mathrm{O}$ distances are slightly different.

The $\mathrm{C}-\mathrm{O}$ lengths are 1.256 (7) and 1.260 (7) \AA, which are comparable with those found by Van

Fig. 1. The molecular structure of the title complex showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary size. [Symmetry code: (i) $-x, y, \frac{1}{2}-z$.]

Niekerk, Schoening \& Talbot (1953) (1.30 and $1.38 \AA$). The present results are consistent with those found in both diaquabis (p-chlorophenoxyacetato)zinc(II) [1.260 (3) and 1.266 (3) \AA; Smith, O'Reilly, Kennard, Stadnicka \& Oleksyn, 1981] and diaquabis[(phenylthio)acetato]zinc(II) [1.245 (6) and 1.256 (6) A; Mak, Yip, Smith, O'Reilly \& Kennard, 1984].

An EXAFS study found that the averaged Zn O (carboxylate) length increases with increasing coordination number (Pan, Knapp \& Cooper, 1984). This is confirmed here: the averaged $\mathrm{Zn}-\mathrm{O}$ length in four coordination is 1.957 (2) A (Clegg, Little \& Straughan, 1986), in five coordination is 2.016 (2) \AA (Montgomery \& Lingafelter, 1963) and in six coordination is 2.188 (4) \AA (present work). Intermolecular hydrogen bonds are observed between $\mathrm{O} 1 \cdots \mathrm{O} 2(-x, y-1$, $\left.\frac{1}{2}-z\right)[2.675(6) \AA]$ along the b axis and $\mathrm{O} 1 \cdots \mathrm{O} 3(-x$, $-y,-z)[2.711(6) \AA]$ along the c axis as found previously by Van Niekerk, Schoening \& Talbot (1953).

Experimental

The title compound was prepared as the dihydrate by recrystallization from an aqueous solution.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=219.50$
Monoclinic
C2/c
$a=14.394$ (3) \AA
$b=5.330(2) \AA$
$c=10.962(3) \AA$
$\beta=99.88$ (2) ${ }^{\circ}$
$V=828.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.760 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5R diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scan
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.295, T_{\text {max }}=0.359$
764 measured reflections

$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 24 reflections
$\theta=76.07-79.92^{\circ}$
$\mu=4.097 \mathrm{~mm}^{-1}$
$T=292(1) \mathrm{K}$
Plate
$0.75 \times 0.30 \times 0.25 \mathrm{~mm}$
Colorless

738 independent reflections
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=62.84^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 6$
$l=-12 \rightarrow 13$
3 standard reflections every 150 reflections intensity decay: -0.54%

Refinement

Refinement on F
$R=0.060$
$w R=0.118$
$S=2.280$
659 reflections
51 parameters
H atoms not refined

$$
\begin{aligned}
& \Delta \rho_{\max }=0.67 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.53 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction:
Zachariasen type 2
Gaussian isotropic
(Zachariasen, 1968)
Extinction coefficient: none

```
\(w=1 / \sigma^{2}\left(F_{o}\right)\)
\((\Delta / \sigma)_{\max }=0.0240\)
```

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	U_{eq}
Zn	0	$0.1304(1)$	$1 / 4$	$0.0478(5)$
O 1	$-0.0828(4)$	$-0.1128(7)$	$0.1453(4)$	$0.051(1)$
O 2	$0.1043(3)$	$0.4319(9)$	$0.2606(3)$	$0.055(1)$
O 3	$0.0695(3)$	$0.2158(9)$	$0.0933(3)$	$0.052(1)$
C 1	$0.1147(4)$	$0.3940(10)$	$0.1503(6)$	$0.043(2)$
C 2	$0.1733(5)$	$0.570(1)$	$0.0880(6)$	$0.054(2)$

Table 2. Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$

Zn -O1	1.987 (4)	$\mathrm{O} 2-\mathrm{Cl}$	1.260 (7)
$\mathrm{Zn}-\mathrm{O} 2$	2.189 (5)	$\mathrm{O} 3-\mathrm{Cl}$	1.256 (7)
$\mathrm{Zn}-\mathrm{O} 3$	2.179 (4)	$\mathrm{C} 1-\mathrm{C} 2$	1.503 (8)
$\mathrm{Ol}-\mathrm{Zn}-\mathrm{Ol}^{\text {i }}$	98.6 (3)	$\mathrm{O} 2-\mathrm{Zn}-\mathrm{O} 3$	59.0 (1)
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O}^{2}$	147.9 (2)	$\mathrm{O} 3-\mathrm{Zn}-\mathrm{O}^{\text {i }}$	155.9 (3)
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O}^{1}$	96.3 (2)	$\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cl}$	91.4 (4)
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 3$	89.5 (2)	$\mathrm{Zn}-\mathrm{O} 3-\mathrm{Cl}$	92.0 (3)
$\mathrm{O}-\mathrm{Zn}-\mathrm{O}^{\text {i }}$	106.3 (2)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O} 3$	117.5 (5)
$\mathrm{O} 2-\mathrm{Zn}-\mathrm{O}^{\text {i }}$	85.5 (2)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C}_{2}$	120.3 (6)
$\mathrm{O} 2-\mathrm{Zn}-\mathrm{O}^{\prime}$	102.0 (2)	$\mathrm{O} 3-\mathrm{Cl}-\mathrm{C} 2$	122.0 (5)

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.
H atoms were fixed at ideal positions with common isotropic displacement parameters ($U_{\text {iso }}=0.0657 \AA^{2}$).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1992b). Program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA 1020). Services for accessing these data are described at the back of the journal.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Chan, W.-H., Mak, T. C. W., Yip, W.-H., Smith, G., O'Reilly, E. J. \& Kennard, C. H. L. (1987). Polyhedron, 6, 881-889.
Clegg, W., Little, I. R. \& Straughan, B. P. (1986). Acta Cryst. C42, 1701-1703.
Mak, T. C. W., Yip, W.-H., Smith, G. S., O’Reilly, E. J. \& Kennard, C. H. L. (1984). Inorg. Chim. Acta, 84, 57-64.

Molecular Structure Corporation (1992a). MSCIAFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Montgomery, H. \& Lingafelter, E. C. (1963). Acta Cryst. 16, 748-752.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
O'Reilly, E. J., Smith, G., Kennard, C. H. L. \& Mak, T. C. (1987). Aust. J. Chem. 40, 1147-1159.

Pan, H. K., Knapp, G. S. \& Cooper, S. L. (1984). Colloid Polym. Sci. 262, 734-746.
Smith, G., Lynch, D. E., Mak, T. C. W., Yip, W.-H. \& Kennard, C. H. L. (1993). Polyhedron, 12, 203-208.

Smith, G., O'Reilly, E. J., Kennard, C. H. L., Stadnicka, K. \& Oleksyn, B. (1981). Inorg. Chim. Acta, 47, 111-120.

Van Niekerk, J. N., Schoening, F. R. L. \& Talbot, J. H. (1953). Acta Cryst. 6, 720-723.
Vlaic, G., Williams, C. E., Jérome, R., Tant, M. R. \& Wilkes, G. L. (1988). Polymer, 29, 173-176.

Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1997). C53, 1031-1034

\{Tris[N-(salicylidene)-2-aminoethyl]amine\}$\operatorname{tin}(I V)$ Iodide Acetonitrile Solvate \dagger

Suzanne Watson, ${ }^{a}$ William Errington, ${ }^{a}$ David Fenn, ${ }^{b}$ Peter Moore ${ }^{a}$ and Malcolm G. H. Wallbridge ${ }^{a}$
${ }^{a}$ Department of Chemistry, University of Warwick, Coventry
CV4 7AL, England, and ${ }^{b}$ ICI Paints, Slough, Berkshire
SL2 5DS, England. E-mail: msrpq@csv.warwick.ac.uk

(Received 14 August 1996; accepted 7 March 1997)

Abstract

The crystal structure of the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{27} \mathrm{H}_{27}{ }^{-}\right.\right.$ $\mathrm{N}_{4} \mathrm{O}_{3}$)]I.0.5 $\mathrm{CH}_{3} \mathrm{CN}$, involves two almost identical complex cations in the asymmetric unit. These cations contain Sn atoms in a pseudo-octahedral environment with facial coordination of the azomethine N and the phenolate O atoms. The average $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{N}$ bond lengths are 2.048 (4) and 2.192 (5) \AA, respectively, while the apical N atom in the ligand is considered to be nonbonded at an average distance of 2.687 (5) \AA from the

 Sn atom.
Comment

The crystal structure of the potentially heptadentate $\mathrm{N}_{4} \mathrm{O}_{3}$ Schiff base ligand derived from three moles of salicylaldehyde and tris(2 -aminoethyl)amine (tren), known as (sal) $)_{3}$ tren $\left[\mathrm{H}_{3} L^{1},(1)\right]$, has been reported (Gunduz et al.,1985). Metal complexes of the type [$M\left(L^{1}\right)$] formed from the reaction of $\mathrm{H}_{3} L^{1}$ with tripositive metal ions (M^{3+}) have been found to be either six coordinate with the apical N atom uncoordinated when M^{3+} is $\mathrm{Co}^{\text {IIII }}$ (Elerman, Kabak, Svoboda \& Geselle, 1994) and $\mathrm{Mn}^{\mathrm{III}}$ (Drew, Harding, McKee, Morgan \& Nelson, 1995; Chandra \& Chakravorty, 1991), or seven coordinate with all four N atoms bonded when M^{3+} is $\mathrm{Bi}^{\text {III }}$ (Bharadwaj, Lee, Mandal, Skelton \& White,
\dagger Alternative name: $\left\{2,2^{\prime}, 2^{\prime \prime}\right.$-[nitrilotris(ethylenenitrilomethylidyneκN)]triphenolato $\left.-\kappa^{3} O\right\} \operatorname{tin}(I V)$ iodide 0.5 -acetonitrile solvate.

